Sarcospan-deficient mice maintain normal muscle function.

نویسندگان

  • C S Lebakken
  • D P Venzke
  • R F Hrstka
  • C M Consolino
  • J A Faulkner
  • R A Williamson
  • K P Campbell
چکیده

Sarcospan is an integral membrane component of the dystrophin-glycoprotein complex (DGC) found at the sarcolemma of striated and smooth muscle. The DGC plays important roles in muscle function and viability as evidenced by defects in components of the DGC, which cause muscular dystrophy. Sarcospan is unique among the components of the complex in that it contains four transmembrane domains with intracellular N- and C-terminal domains and is a member of the tetraspan superfamily of proteins. Sarcospan is tightly linked to the sarcoglycans, and together these proteins form a subcomplex within the DGC. Stable expression of sarcospan at the sarcolemma is dependent upon expression of the sarcoglycans. Here we describe the generation and analysis of mice carrying a null mutation in the Sspn gene. Surprisingly, the Sspn-deficient muscle maintains expression of other components of the DGC at the sarcolemma, and no gross histological abnormalities of muscle from the mice are observed. The Sspn-deficient muscle maintains sarcolemmal integrity as determined by serum creatine kinase and Evans blue uptake assays, and the Sspn-deficient muscle maintains normal force and power generation capabilities. These data suggest either that sarcospan is not required for normal DGC function or that the Sspn-deficient muscle is compensating for the absence of sarcospan, perhaps by utilizing another protein to carry out its function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disrupted mechanical stability of the dystrophin-glycoprotein complex causes severe muscular dystrophy in sarcospan transgenic mice.

The dystrophin-glycoprotein complex spans the muscle plasma membrane and provides a mechanical linkage between laminin in the extracellular matrix and actin in the intracellular cytoskeleton. Within the dystrophin-glycoprotein complex, the sarcoglycans and sarcospan constitute a subcomplex of transmembrane proteins that stabilize alpha-dystroglycan, a receptor for laminin and other components o...

متن کامل

Progressive Muscular Dystrophy in α-Sarcoglycan–deficient Mice

Limb-girdle muscular dystrophy type 2D (LGMD 2D) is an autosomal recessive disorder caused by mutations in the alpha-sarcoglycan gene. To determine how alpha-sarcoglycan deficiency leads to muscle fiber degeneration, we generated and analyzed alpha-sarcoglycan- deficient mice. Sgca-null mice developed progressive muscular dystrophy and, in contrast to other animal models for muscular dystrophy,...

متن کامل

Disruption of the Sarcoglycan–Sarcospan Complex in Vascular Smooth Muscle A Novel Mechanism for Cardiomyopathy and Muscular Dystrophy

To investigate mechanisms in the pathogenesis of cardiomyopathy associated with mutations of the dystrophin-glycoprotein complex, we analyzed genetically engineered mice deficient for either alpha-sarcoglycan (Sgca) or delta-sarcoglycan (Sgcd). We found that only Sgcd null mice developed cardiomyopathy with focal areas of necrosis as the histological hallmark in cardiac and skeletal muscle. Abs...

متن کامل

Disruption of the beta-sarcoglycan gene reveals pathogenetic complexity of limb-girdle muscular dystrophy type 2E.

Limb-girdle muscular dystrophy type 2E (LGMD 2E) is caused by mutations in the beta-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscle. beta-sarcoglycan-deficient (Sgcb-null) mice developed severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. The sarcoglycan-sarcospan and dystroglycan complexes were disrupted in skeletal, cardiac, and smooth muscl...

متن کامل

Loss of sarcolemma nNOS in sarcoglycan-deficient muscle.

nNOS, anchored to the sarcolemma through its interactions with the dystrophin-glycoprotein complex, is dramatically reduced in dystrophin-deficient mdx mice and Duchenne muscular dystrophy patients. Recent evidence suggests that loss of nNOS in dystrophin-deficient muscle may contribute significantly to the progression of muscle pathology through a variety of mechanisms. To investigate whether ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 20 5  شماره 

صفحات  -

تاریخ انتشار 2000